Bienaymé's identity

In probability theory, the general[1] form of Bienaymé's identity states that

Var ( i = 1 n X i ) = i = 1 n Var ( X i ) + 2 i , j = 1 i < j n Cov ( X i , X j ) = i , j = 1 n Cov ( X i , X j ) {\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{i=1}^{n}\operatorname {Var} (X_{i})+2\sum _{i,j=1 \atop i<j}^{n}\operatorname {Cov} (X_{i},X_{j})=\sum _{i,j=1}^{n}\operatorname {Cov} (X_{i},X_{j})} .

This can be simplified if X 1 , , X n {\displaystyle X_{1},\ldots ,X_{n}} are pairwise independent or just uncorrelated, integrable random variables, each with finite second moment.[2] This simplification gives:

Var ( i = 1 n X i ) = k = 1 n Var ( X k ) {\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{k=1}^{n}\operatorname {Var} (X_{k})} .

The above expression is sometimes referred to as Bienaymé's formula. Bienaymé's identity may be used in proving certain variants of the law of large numbers.[3]

Estimated variance of the cumulative sum of iid normally distributed random variables (which could represent a gaussian random walk approximating a Wiener process). The sample variance is computed over 300 realizations of the corresponding random process.

See also

References

  1. ^ Klenke, Achim (2013). Wahrscheinlichkeitstheorie. p. 106. doi:10.1007/978-3-642-36018-3.
  2. ^ Loève, Michel (1977). Probability Theory I. Springer. p. 246. ISBN 3-540-90210-4.
  3. ^ Itô, Kiyosi (1984). Introduction to Probability Theory. Cambridge University Press. p. 37. ISBN 0 521 26960 1.