Ephrin A1

Protein-coding gene in the species Homo sapiens
EFNA1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

3HEI, 3MBW, 3CZU

Identifiers
AliasesEFNA1, B61, ECKLG, EFL1, EPLG1, LERK-1, LERK1, TNFAIP4, Ephrin A1, GMAN
External IDsOMIM: 191164; MGI: 103236; HomoloGene: 3262; GeneCards: EFNA1; OMA:EFNA1 - orthologs
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)[1]
Chromosome 1 (human)
Genomic location for EFNA1
Genomic location for EFNA1
Band1q22Start155,127,876 bp[1]
End155,134,899 bp[1]
Gene location (Mouse)
Chromosome 3 (mouse)
Chr.Chromosome 3 (mouse)[2]
Chromosome 3 (mouse)
Genomic location for EFNA1
Genomic location for EFNA1
Band3 F1|3 39.04 cMStart89,179,040 bp[2]
End89,188,449 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right lobe of liver

  • right lung

  • skin of abdomen

  • upper lobe of left lung

  • left lobe of thyroid gland

  • right lobe of thyroid gland

  • minor salivary glands

  • parotid gland

  • rectum

  • duodenum
Top expressed in
  • lip

  • left lung lobe

  • right lung lobe

  • colon

  • duodenum

  • corneal stroma

  • jejunum

  • proximal tubule

  • left colon

  • left lobe of liver
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • protein binding
  • signaling receptor binding
  • ephrin receptor binding
Cellular component
  • membrane
  • plasma membrane
  • integral component of plasma membrane
  • anchored component of membrane
  • extracellular exosome
  • intracellular anatomical structure
  • extracellular region
  • anchored component of plasma membrane
Biological process
  • regulation of cell adhesion mediated by integrin
  • ephrin receptor signaling pathway
  • aortic valve morphogenesis
  • cell-cell signaling
  • negative regulation of transcription by RNA polymerase II
  • regulation of angiogenesis
  • mitral valve morphogenesis
  • endocardial cushion to mesenchymal transition involved in heart valve formation
  • regulation of blood vessel endothelial cell migration
  • regulation of axonogenesis
  • neuron differentiation
  • notochord
  • positive regulation of peptidyl-tyrosine phosphorylation
  • substrate adhesion-dependent cell spreading
  • cell migration
  • negative regulation of epithelial to mesenchymal transition
  • negative regulation of dendritic spine morphogenesis
  • regulation of peptidyl-tyrosine phosphorylation
  • negative regulation of thymocyte apoptotic process
  • MAPK cascade
  • angiogenesis
  • axon guidance
  • positive regulation of protein phosphorylation
  • negative regulation of MAPK cascade
  • positive regulation of MAPK cascade
  • protein stabilization
  • positive regulation of protein tyrosine kinase activity
  • positive regulation of amyloid-beta formation
  • positive regulation of aspartic-type endopeptidase activity involved in amyloid precursor protein catabolic process
  • negative regulation of proteolysis involved in cellular protein catabolic process
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

1942

13636

Ensembl

ENSG00000169242

ENSMUSG00000027954

UniProt

P20827

P52793

RefSeq (mRNA)

NM_004428
NM_182685

NM_001162425
NM_010107

RefSeq (protein)

NP_004419
NP_872626

NP_001155897
NP_034237

Location (UCSC)Chr 1: 155.13 – 155.13 MbChr 3: 89.18 – 89.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Ephrin A1 is a protein that in humans is encoded by the EFNA1 gene.[5][6][7]

This gene encodes a member of the ephrin (EPH) family. The ephrins and EPH-related receptors comprise the largest subfamily of receptor protein-tyrosine kinases and have been implicated in mediating developmental events, especially in the nervous system and in erythropoiesis. Based on their structures and sequence relationships, ephrins are divided into the ephrin-A (EFNA) class, which are anchored to the membrane by a glycosylphosphatidylinositol linkage, and the ephrin-B (EFNB) class, which are transmembrane proteins. This gene encodes an EFNA class ephrin which binds to the EPHA2, EPHA4, EPHA5, EPHA6, and EPHA7 receptors. Two transcript variants that encode different isoforms were identified through sequence analysis.[7]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000169242 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000027954 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Holzman LB, Marks RM, Dixit VM (Nov 1990). "A novel immediate-early response gene of endothelium is induced by cytokines and encodes a secreted protein". Molecular and Cellular Biology. 10 (11): 5830–8. doi:10.1128/mcb.10.11.5830. PMC 361366. PMID 2233719.
  6. ^ Cerretti DP, Lyman SD, Kozlosky CJ, Copeland NG, Gilbert DJ, Jenkins NA, Valentine V, Kirstein MN, Shapiro DN, Morris SW (Apr 1996). "The genes encoding the eph-related receptor tyrosine kinase ligands LERK-1 (EPLG1, Epl1), LERK-3 (EPLG3, Epl3), and LERK-4 (EPLG4, Epl4) are clustered on human chromosome 1 and mouse chromosome 3". Genomics. 33 (2): 277–82. doi:10.1006/geno.1996.0192. PMID 8660976.
  7. ^ a b "Entrez Gene: EFNA1 ephrin-A1".

Further reading

  • Pandey A, Lindberg RA, Dixit VM (Sep 1995). "Cell signalling. Receptor orphans find a family". Current Biology. 5 (9): 986–9. Bibcode:1995CBio....5..986P. doi:10.1016/S0960-9822(95)00195-3. PMID 8542290. S2CID 13338632.
  • Flanagan JG, Vanderhaeghen P (1998). "The ephrins and Eph receptors in neural development". Annual Review of Neuroscience. 21: 309–45. doi:10.1146/annurev.neuro.21.1.309. PMID 9530499.
  • Zhou R (Mar 1998). "The Eph family receptors and ligands". Pharmacology & Therapeutics. 77 (3): 151–81. doi:10.1016/S0163-7258(97)00112-5. PMID 9576626.
  • Holder N, Klein R (May 1999). "Eph receptors and ephrins: effectors of morphogenesis". Development. 126 (10): 2033–44. doi:10.1242/dev.126.10.2033. PMID 10207129.
  • Wilkinson DG (2000). "Eph receptors and ephrins: regulators of guidance and assembly". International Review of Cytology. 196: 177–244. doi:10.1016/S0074-7696(00)96005-4. ISBN 978-0-12-364600-2. PMID 10730216.
  • Xu Q, Mellitzer G, Wilkinson DG (Jul 2000). "Roles of Eph receptors and ephrins in segmental patterning". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 355 (1399): 993–1002. doi:10.1098/rstb.2000.0635. PMC 1692797. PMID 11128993.
  • Wilkinson DG (Mar 2001). "Multiple roles of EPH receptors and ephrins in neural development". Nature Reviews. Neuroscience. 2 (3): 155–64. doi:10.1038/35058515. PMID 11256076. S2CID 205014301.
  • Mahadevan D, Thanki N, Singh J, McPhie P, Zangrilli D, Wang LM, Guerrero C, LeVine H, Humblet C, Saldanha J (Jul 1995). "Structural studies on the PH domains of Db1, Sos1, IRS-1, and beta ARK1 and their differential binding to G beta gamma subunits". Biochemistry. 34 (28): 9111–7. doi:10.1021/bi00028a021. PMID 7619809.
  • Kozlosky CJ, Maraskovsky E, McGrew JT, VandenBos T, Teepe M, Lyman SD, Srinivasan S, Fletcher FA, Gayle RB, Cerretti DP (Jan 1995). "Ligands for the receptor tyrosine kinases hek and elk: isolation of cDNAs encoding a family of proteins". Oncogene. 10 (2): 299–306. PMID 7838529.
  • Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD (Nov 1994). "Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity". Science. 266 (5186): 816–9. Bibcode:1994Sci...266..816D. doi:10.1126/science.7973638. PMID 7973638.
  • Beckmann MP, Cerretti DP, Baum P, Vanden Bos T, James L, Farrah T, Kozlosky C, Hollingsworth T, Shilling H, Maraskovsky E (Aug 1994). "Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors". The EMBO Journal. 13 (16): 3757–62. doi:10.1002/j.1460-2075.1994.tb06685.x. PMC 395287. PMID 8070404.
  • Gale NW, Holland SJ, Valenzuela DM, Flenniken A, Pan L, Ryan TE, Henkemeyer M, Strebhardt K, Hirai H, Wilkinson DG, Pawson T, Davis S, Yancopoulos GD (Jul 1996). "Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis". Neuron. 17 (1): 9–19. doi:10.1016/S0896-6273(00)80276-7. PMID 8755474. S2CID 1075856.
  • Ephnomenclaturecommittee (Aug 1997). "Unified nomenclature for Eph family receptors and their ligands, the ephrins. Eph Nomenclature Committee". Cell. 90 (3): 403–4. doi:10.1016/S0092-8674(00)80500-0. PMID 9267020. S2CID 26773768.
  • Nagel W, Schilcher P, Zeitlmann L, Kolanus W (Aug 1998). "The PH domain and the polybasic c domain of cytohesin-1 cooperate specifically in plasma membrane association and cellular function". Molecular Biology of the Cell. 9 (8): 1981–94. doi:10.1091/mbc.9.8.1981. PMC 25450. PMID 9693361.
  • v
  • t
  • e
Angiopoietin
  • Kinase inhibitors: Altiratinib
  • CE-245677
  • Rebastinib
CNTF
EGF (ErbB)
EGF
(ErbB1/HER1)
ErbB2/HER2
  • Agonists: Unknown/none
ErbB3/HER3
ErbB4/HER4
FGF
FGFR1
FGFR2
  • Antibodies: Aprutumab
  • Aprutumab ixadotin
FGFR3
FGFR4
Unsorted
HGF (c-Met)
IGF
IGF-1
  • Kinase inhibitors: BMS-754807
  • Linsitinib
  • NVP-ADW742
  • NVP-AEW541
  • OSl-906
IGF-2
  • Antibodies: Dusigitumab
  • Xentuzumab (against IGF-1 and IGF-2)
Others
  • Cleavage products/derivatives with unknown target: Glypromate (GPE, (1-3)IGF-1)
  • Trofinetide
LNGF (p75NTR)
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: LEVI-04 (p75NTR-Fc)
PDGF
RET (GFL)
GFRα1
GFRα2
GFRα3
GFRα4
Unsorted
  • Kinase inhibitors: Agerafenib
SCF (c-Kit)
TGFβ
  • See here instead.
Trk
TrkA
  • Negative allosteric modulators: VM-902A
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: ReN-1820 (TrkAd5)
TrkB
TrkC
VEGF
Others