List of topologies

List of concrete topologies and topological spaces

The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.

Discrete and indiscrete

  • Discrete topology − All subsets are open.
  • Indiscrete topology, chaotic topology, or Trivial topology − Only the empty set and its complement are open.

Cardinality and ordinals

  • Cocountable topology
    • Given a topological space ( X , τ ) , {\displaystyle (X,\tau ),} the cocountable extension topology on X {\displaystyle X} is the topology having as a subbasis the union of τ and the family of all subsets of X {\displaystyle X} whose complements in X {\displaystyle X} are countable.
  • Cofinite topology
  • Double-pointed cofinite topology
  • Ordinal number topology
  • Pseudo-arc
  • Ran space
  • Tychonoff plank

Finite spaces

Integers

  • Arens–Fort space − A Hausdorff, regular, normal space that is not first-countable or compact. It has an element (i.e. p := ( 0 , 0 ) {\displaystyle p:=(0,0)} ) for which there is no sequence in X { p } {\displaystyle X\setminus \{p\}} that converges to p {\displaystyle p} but there is a sequence x = ( x i ) i = 1 {\displaystyle x_{\bullet }=\left(x_{i}\right)_{i=1}^{\infty }} in X { ( 0 , 0 ) } {\displaystyle X\setminus \{(0,0)\}} such that ( 0 , 0 ) {\displaystyle (0,0)} is a cluster point of x . {\displaystyle x_{\bullet }.}
  • Arithmetic progression topologies
  • The Baire space − N N {\displaystyle \mathbb {N} ^{\mathbb {N} }} with the product topology, where N {\displaystyle \mathbb {N} } denotes the natural numbers endowed with the discrete topology. It is the space of all sequences of natural numbers.
  • Divisor topology
  • Partition topology

Fractals and Cantor set

Orders

Manifolds and complexes

Hyperbolic geometry

Paradoxical spaces

  • Lakes of Wada − Three disjoint connected open sets of R 2 {\displaystyle \mathbb {R} ^{2}} or ( 0 , 1 ) 2 {\displaystyle (0,1)^{2}} that they all have the same boundary.

Unique

Related or similar to manifolds

Embeddings and maps between spaces

Counter-examples (general topology)

The following topologies are a known source of counterexamples for point-set topology.

Topologies defined in terms of other topologies

Natural topologies

List of natural topologies.

Compactifications

Compactifications include:

Topologies of uniform convergence

This lists named topologies of uniform convergence.

Other induced topologies

  • Box topology
  • Compact complement topology
  • Duplication of a point: Let x X {\displaystyle x\in X} be a non-isolated point of X , {\displaystyle X,} let d X {\displaystyle d\not \in X} be arbitrary, and let Y = X { d } . {\displaystyle Y=X\cup \{d\}.} Then τ = { V Y :  either  V  or  ( V { d } ) { x }  is an open subset of  X } {\displaystyle \tau =\{V\subseteq Y:{\text{ either }}V{\text{ or }}(V\setminus \{d\})\cup \{x\}{\text{ is an open subset of }}X\}} is a topology on Y {\displaystyle Y} and x {\displaystyle x} and d {\displaystyle d} have the same neighborhood filters in Y . {\displaystyle Y.} In this way, x {\displaystyle x} has been duplicated.[1]
  • Extension topology

Functional analysis

Operator topologies

Tensor products

Probability

Other topologies

See also

Citations

  1. ^ Wilansky 2008, p. 35.

References

  • Adams, Colin; Franzosa, Robert (2009). Introduction to Topology: Pure and Applied. New Delhi: Pearson Education. ISBN 978-81-317-2692-1. OCLC 789880519.
  • Arkhangel'skii, Alexander Vladimirovich; Ponomarev, V.I. (1984). Fundamentals of General Topology: Problems and Exercises. Mathematics and Its Applications. Vol. 13. Dordrecht Boston: D. Reidel. ISBN 978-90-277-1355-1. OCLC 9944489.
  • Bourbaki, Nicolas (1989) [1966]. General Topology: Chapters 1–4 [Topologie Générale]. Éléments de mathématique. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64241-1. OCLC 18588129.
  • Bourbaki, Nicolas (1989) [1967]. General Topology 2: Chapters 5–10 [Topologie Générale]. Éléments de mathématique. Vol. 4. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64563-4. OCLC 246032063.
  • Comfort, William Wistar; Negrepontis, Stylianos (1974). The Theory of Ultrafilters. Vol. 211. Berlin Heidelberg New York: Springer-Verlag. ISBN 978-0-387-06604-2. OCLC 1205452.
  • Dixmier, Jacques (1984). General Topology. Undergraduate Texts in Mathematics. Translated by Berberian, S. K. New York: Springer-Verlag. ISBN 978-0-387-90972-1. OCLC 10277303.
  • Császár, Ákos (1978). General topology. Translated by Császár, Klára. Bristol England: Adam Hilger Ltd. ISBN 0-85274-275-4. OCLC 4146011.
  • Dolecki, Szymon; Mynard, Frederic (2016). Convergence Foundations Of Topology. New Jersey: World Scientific Publishing Company. ISBN 978-981-4571-52-4. OCLC 945169917.
  • Dugundji, James (1966). Topology. Boston: Allyn and Bacon. ISBN 978-0-697-06889-7. OCLC 395340485.
  • Howes, Norman R. (23 June 1995). Modern Analysis and Topology. Graduate Texts in Mathematics. New York: Springer-Verlag Science & Business Media. ISBN 978-0-387-97986-1. OCLC 31969970. OL 1272666M.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
  • Joshi, K. D. (1983). Introduction to General Topology. New York: John Wiley and Sons Ltd. ISBN 978-0-85226-444-7. OCLC 9218750.
  • Kelley, John L. (1975). General Topology. Graduate Texts in Mathematics. Vol. 27. New York: Springer Science & Business Media. ISBN 978-0-387-90125-1. OCLC 338047.
  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
  • Munkres, James R. (2000). Topology (Second ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 978-0-13-181629-9. OCLC 42683260.
  • Schechter, Eric (1996). Handbook of Analysis and Its Foundations. San Diego, CA: Academic Press. ISBN 978-0-12-622760-4. OCLC 175294365.
  • Schubert, Horst (1968). Topology. London: Macdonald & Co. ISBN 978-0-356-02077-8. OCLC 463753.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • Wilansky, Albert (17 October 2008) [1970]. Topology for Analysis. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-46903-4. OCLC 227923899.
  • Willard, Stephen (2004) [1970]. General Topology. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.

External links

  • π-Base: An Interactive Encyclopedia of Topological Spaces