Order convergence

In mathematics, specifically in order theory and functional analysis, a filter F {\displaystyle {\mathcal {F}}} in an order complete vector lattice X {\displaystyle X} is order convergent if it contains an order bounded subset (that is, a subset contained in an interval of the form [ a , b ] := { x X : a x  and  x b } {\displaystyle [a,b]:=\{x\in X:a\leq x{\text{ and }}x\leq b\}} ) and if

sup { inf S : S OBound ( X ) F } = inf { sup S : S OBound ( X ) F } , {\displaystyle \sup \left\{\inf S:S\in \operatorname {OBound} (X)\cap {\mathcal {F}}\right\}=\inf \left\{\sup S:S\in \operatorname {OBound} (X)\cap {\mathcal {F}}\right\},}
where OBound ( X ) {\displaystyle \operatorname {OBound} (X)} is the set of all order bounded subsets of X, in which case this common value is called the order limit of F {\displaystyle {\mathcal {F}}} in X . {\displaystyle X.} [1]

Order convergence plays an important role in the theory of vector lattices because the definition of order convergence does not depend on any topology.

Definition

A net ( x α ) α A {\displaystyle \left(x_{\alpha }\right)_{\alpha \in A}} in a vector lattice X {\displaystyle X} is said to decrease to x 0 X {\displaystyle x_{0}\in X} if α β {\displaystyle \alpha \leq \beta } implies x β x α {\displaystyle x_{\beta }\leq x_{\alpha }} and x 0 = i n f { x α : α A } {\displaystyle x_{0}=inf\left\{x_{\alpha }:\alpha \in A\right\}} in X . {\displaystyle X.} A net ( x α ) α A {\displaystyle \left(x_{\alpha }\right)_{\alpha \in A}} in a vector lattice X {\displaystyle X} is said to order-converge to x 0 X {\displaystyle x_{0}\in X} if there is a net ( y α ) α A {\displaystyle \left(y_{\alpha }\right)_{\alpha \in A}} in X {\displaystyle X} that decreases to 0 {\displaystyle 0} and satisfies | x α x 0 | y α {\displaystyle \left|x_{\alpha }-x_{0}\right|\leq y_{\alpha }} for all α A {\displaystyle \alpha \in A} .[2]

Order continuity

A linear map T : X Y {\displaystyle T:X\to Y} between vector lattices is said to be order continuous if whenever ( x α ) α A {\displaystyle \left(x_{\alpha }\right)_{\alpha \in A}} is a net in X {\displaystyle X} that order-converges to x 0 {\displaystyle x_{0}} in X , {\displaystyle X,} then the net ( T ( x α ) ) α A {\displaystyle \left(T\left(x_{\alpha }\right)\right)_{\alpha \in A}} order-converges to T ( x 0 ) {\displaystyle T\left(x_{0}\right)} in Y . {\displaystyle Y.} T {\displaystyle T} is said to be sequentially order continuous if whenever ( x n ) n N {\displaystyle \left(x_{n}\right)_{n\in \mathbb {N} }} is a sequence in X {\displaystyle X} that order-converges to x 0 {\displaystyle x_{0}} in X , {\displaystyle X,} then the sequence ( T ( x n ) ) n N {\displaystyle \left(T\left(x_{n}\right)\right)_{n\in \mathbb {N} }} order-converges to T ( x 0 ) {\displaystyle T\left(x_{0}\right)} in Y . {\displaystyle Y.} [2]

Related results

In an order complete vector lattice X {\displaystyle X} whose order is regular, X {\displaystyle X} is of minimal type if and only if every order convergent filter in X {\displaystyle X} converges when X {\displaystyle X} is endowed with the order topology.[1]

See also

  • Banach lattice – Banach space with a compatible structure of a lattice
  • Fréchet lattice – Topological vector lattice
  • Locally convex lattice
  • Normed lattice
  • Vector lattice – Partially ordered vector space, ordered as a latticePages displaying short descriptions of redirect targets

References

  1. ^ a b Schaefer & Wolff 1999, pp. 234–242.
  2. ^ a b Khaleelulla 1982, p. 8.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category