Zeta-Verteilung

Zeta-Verteilung mit verschiedenen Parameterwerten von s

Die Zeta-Verteilung (auch Zipf-Verteilung nach George Kingsley Zipf) ist eine Wahrscheinlichkeitsverteilung in der Stochastik. Sie ist univariat und eine diskrete Wahrscheinlichkeitsverteilung, die den natürlichen Zahlen x = 1 , 2 , 3 , {\displaystyle x=1,2,3,\dotsc } die Wahrscheinlichkeiten

P ( X = x ) = x s ζ ( s ) {\displaystyle P(X=x)={\frac {x^{-s}}{\zeta (s)}}}

zuordnet, wobei s > 1 {\displaystyle s>1} ein Parameter und ζ ( s ) {\displaystyle \zeta (s)} die riemannsche Zetafunktion ist.


Ihr k {\displaystyle k} -tes Moment existiert, falls s > k + 1 {\displaystyle s>k+1} , und liegt in diesem Fall bei

E ( X k ) = ζ ( s k ) ζ ( s ) {\displaystyle E(X^{k})={\frac {\zeta (s-k)}{\zeta (s)}}} .

Die Anzahl unterschiedlicher Primfaktoren einer Zeta-verteilten Zufallsvariable sind wiederum unabhängige Zufallsvariablen. Dies ist bei keiner anderen Wahrscheinlichkeitsverteilung der Fall.

Zur Motivation dieser Verteilung siehe Zipfsches Gesetz.

  • Eric W. Weisstein: Zipf distribution. In: MathWorld (englisch).
  • Größe von US-Firmen gehorcht der mathematischen Zipf-Verteilung auf wissenschaft.de
Diskrete univariate Verteilungen

Diskrete univariate Verteilungen für endliche Mengen:
Benford | Bernoulli | beta-binomial | binomial | Dirac | diskret uniform | empirisch | hypergeometrisch | kategorial | negativ hypergeometrisch | Rademacher | verallgemeinert binomial | Zipf | Zipf-Mandelbrot | Zweipunkt

Diskrete univariate Verteilungen für unendliche Mengen:
Boltzmann | Conway-Maxwell-Poisson | discrete-Phase-Type | erweitert negativ binomial | Gauss-Kuzmin | gemischt Poisson | geometrisch | logarithmisch | negativ binomial | parabolisch-fraktal | Poisson | Skellam | verallgemeinert Poisson | Yule-Simon | Zeta

Kontinuierliche univariate Verteilungen

Kontinuierliche univariate Verteilungen mit kompaktem Intervall:
Beta | Cantor | Kumaraswamy | raised Cosine | Dreieck | Trapez | U-quadratisch | stetig uniform | Wigner-Halbkreis

Kontinuierliche univariate Verteilungen mit halboffenem Intervall:
Beta prime | Bose-Einstein | Burr | Chi | Chi-Quadrat | Coxian | Erlang | Exponential | Extremwert | F | Fermi-Dirac | Folded normal | Fréchet | Gamma | Gamma-Gamma | verallgemeinert invers Gauß | halblogistisch | halbnormal | Hartman-Watson | Hotellings T-Quadrat | hyper-exponentiale | hypoexponential | invers Chi-Quadrat | scale-invers Chi-Quadrat | Invers Normal | Invers Gamma | Kolmogorow-Verteilung | Lévy | log-normal | log-logistisch | Maxwell-Boltzmann | Maxwell-Speed | Nakagami | nichtzentriert Chi-Quadrat | Pareto | Phase-Type | Rayleigh | relativistisch Breit-Wigner | Rice | Rosin-Rammler | shifted Gompertz | truncated normal | Type-2-Gumbel | Weibull | Wilks’ Lambda

Kontinuierliche univariate Verteilungen mit unbeschränktem Intervall:
Cauchy | Extremwert | exponential Power | Fishers z | Fisher-Tippett (Gumbel) | generalized hyperbolic | Hyperbolic-secant | Landau | Laplace | alpha-stabil | logistisch | normal (Gauß) | normal-invers Gauß’sch | Skew-normal | Studentsche t | Type-1-Gumbel | Variance-Gamma | Voigt

Multivariate Verteilungen

Diskrete multivariate Verteilungen:
Dirichlet compound multinomial | Ewens | gemischt Multinomial | multinomial | multivariat hypergeometrisch | multivariat Poisson | negativmultinomial | Pólya/Eggenberger | polyhypergeometrisch

Kontinuierliche multivariate Verteilungen:
Dirichlet | GEM | generalized Dirichlet | multivariat normal | multivariat Student | normalskaliert invers Gamma | Normal-Gamma | Poisson-Dirichlet

Multivariate Matrixverteilungen:
Gleichverteilung auf der Stiefel-Mannigfaltigkeit | Invers Wishart | Matrix Beta | Matrix Gamma | Matrix invers Beta | Matrix invers Gamma | Matrix Normal | Matrix Student-t | Matrix-Von-Mises-Fisher-Verteilung | Normal-invers-Wishart | Normal-Wishart | Wishart