Bell-szám

5 objektum összes lehetséges (52) osztályozása

A kombinatorikában az Eric Temple Bellről elnevezett n-edik Bell-szám egy n elemű halmaz lehetséges osztályozásainak száma. A Bn-nel jelölt n-edik Bell-szám egyúttal egy n elemű halmaz ekvivalenciarelációinak száma. Például B3 = 5, mert az {abc} háromelemű halmaznak 5 osztályozása van:

{ {a}, {b}, {c} }
{ {a}, {b, c} }
{ {b}, {a, c} }
{ {c}, {a, b} }
{ {a, b, c} }

Bell-számok

A sorozat első elemei a nulladik tagtól kezdődően:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, … (A000110 sorozat az OEIS-ben)

Összefüggések

A Bell-számokat a másodfajú Stirling-számok összegzésével kapjuk:

B n = k = 0 n S ( n , k ) . {\displaystyle B_{n}=\sum _{k=0}^{n}S(n,k).}

A Bell-számokra vonatkozó rekurzív képlet:

B n + 1 = k = 0 n ( n k ) B k . {\displaystyle B_{n+1}=\sum _{k=0}^{n}{{n \choose k}B_{k}}.}

Érvényes továbbá a következő formula:

B n = 1 e k = 0 k n k ! {\displaystyle B_{n}={\frac {1}{e}}\sum _{k=0}^{\infty }{\frac {k^{n}}{k!}}\,} (Dobiński 1877)[1]

A Bell-számok aszimptotikus nagyságrendje:

B n 1 n λ n n + 1 2 e λ n n 1 , {\displaystyle B_{n}\sim {\frac {1}{\sqrt {n}}}\lambda _{n}^{n+{\frac {1}{2}}}e^{\lambda _{n}-n-1},} ahol λ n ln λ n = n . {\displaystyle \lambda _{n}\ln \lambda _{n}=n.}

A Bell-számok sorozatának exponenciális generátorfüggvénye:

n = 0 B n x n n ! = exp ( exp ( x ) 1 ) . {\displaystyle \sum _{n=0}^{\infty }B_{n}{\frac {x^{n}}{n!}}=\exp(\exp(x)-1).}

Bell-háromszög

A Bell-háromszög a Pascal-háromszöghöz hasonló elrendezésű ábra, amely a Bell-számok egyszerű kiszámolását adja. Egyéb elnevezései Aitken-sorozat vagy Peirce-háromszög Alexander Aitken és Charles Sanders Peirce[2] után. Jelen esetben a bal szélső sor tartalmazza a Bell-számokat, a jobb szélső eggyel előrébb jár.

Bell háromszög készítése
1
1     2
2     3     5
5     7     10    15
15    20    27    37    52
52    67    87    114   151   203
203   255   322   409   523   674   877

Bell-háromszög rajzolásának lépései

  1. Az első sorban egy egyes van.
  2. Vesszük a következő sort. (n növelése 1-gyel)
  3. Az n. sor 1. eleme egyenlő az n-1. sor utolsó elemével.
  4. Az n. sor minden elemére (m=2,...,n):
    • Az n. sor m. eleme egyenlő az n. sor m-1. és az n-1. sor m-1. elemének összegével.
  5. Vissza a 2. lépésre.

Jegyzetek

  1. G. Dobiński: Summirung der Reihe n m n ! {\displaystyle \scriptstyle \sum {\frac {n^{m}}{n!}}} für m = 1, 2, 3, 4, 5, …, Grunert-Archiv 61, 1877, S. 333–336
  2. "Sloane's A011971 : Aitken's array", On-Line Encyclopedia of Integer Sequences, OEIS Foundation

Források

  • Hajnal Péter: Összeszámlálási problémák, Polygon jegyzettár, Szeged
  • Katona Gyula Y., Recski András, Szabó Csaba: A számítástudomány alapjai, Typotex, Budapest
  • Lovász László: Kombinatorikai problémák és feladatok, Typotex, Budapest


Sablon:Prímszámok osztályozása
  • m
  • v
  • sz
Prímszámok osztályozása
Képlet alapján
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Dupla Mersenne (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Faktoriális (n! ± 1)
  • Primoriális (pn# ± 1)
  • Eukleidész (pn# + 1)
  • Pitagoraszi (4n + 1)
  • Pierpont (2u·3v + 1)
  • Kvartikus prímek (x4 + y4)
  • Solinas (2a ± 2b ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Köbös (x3 − y3)/(x − y)
  • Carol (2n − 1)2 − 2
  • Kynea (2n + 1)2 − 2
  • Leyland (xy + yx)
  • Szábit (3·2n ± 1)
  • Mills (floor(A3n))
Számsorozat alapján
Tulajdonság alapján
Számrendszerfüggő
  • Boldog
  • Diéder
  • Palindrom
  • Mírp
  • Repunit (10n − 1)/9
  • Permutálható
  • Körkörös
  • Csonkolható
  • Középpontosan tükrös
  • Minimális
  • Gyenge
  • Full reptend
  • Unikális
  • Primeval
  • Önös
  • Smarandache–Wellin
Mintázatok
  • Iker (p, p + 2)
  • Ikerprímlánc (n − 1, n + 1, 2n − 1, 2n + 1, …)
  • Prímhármas (p, p + 2 vagy p + 4, p + 6)
  • Prímnégyes (p, p + 2, p + 6, p + 8)
  • prím n−es
  • Unokatestvér (p, p + 4)
  • Szexi (p, p + 6)
  • Chen
  • Sophie Germain (p, 2p + 1)
  • Cunningham-lánc (p, 2p ± 1, …)
  • Biztonságos (p, (p − 1)/2)
  • Számtani sorozatban (p + a·n, n = 0, 1, …)
  • Kiegyensúlyozott (egymást követő p − n, p, p + n)
Méret alapján
  • Titáni (1000+ számjegy)
  • Gigantikus (10 000+)
  • Mega (1 000 000+)
  • Ismert legnagyobb
Komplex számok
Összetett számok
Kapcsolódó fogalmak
Az első 100 prím
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
  • 233
  • 239
  • 241
  • 251
  • 257
  • 263
  • 269
  • 271
  • 277
  • 281
  • 283
  • 293
  • 307
  • 311
  • 313
  • 317
  • 331
  • 337
  • 347
  • 349
  • 353
  • 359
  • 367
  • 373
  • 379
  • 383
  • 389
  • 397
  • 401
  • 409
  • 419
  • 421
  • 431
  • 433
  • 439
  • 443
  • 449
  • 457
  • 461
  • 463
  • 467
  • 479
  • 487
  • 491
  • 499
  • 503
  • 509
  • 521
  • 523
  • 541
  • Matematika Matematikaportál • összefoglaló, színes tartalomajánló lap
Ez a matematikai tárgyú lap egyelőre csonk (erősen hiányos). Segíts te is, hogy igazi szócikk lehessen belőle!