TNK2

edit
Tirozinska kinaza, nereceptor, 2

PDB prikaz baziran na 1cf4.
Dostupne strukture
1CF4, 1U46, 1U4D, 1U54, 3EQP, 3EQR, 4EWH, 4HZR, 4HZS, 4ID7
Identifikatori
SimboliTNK2; ACK; ACK-1; ACK1; p21cdc42Hs
Vanjski IDOMIM: 606994 MGI: 1858308 HomoloGene: 4224 GeneCards: TNK2 Gene
EC broj2.7.11.1 2.7.10.2, 2.7.11.1
Ontologija gena
Molekulska funkcija proteinska serin/treoninska kinazna aktivnost
proteinska serin/treonin/tirozinska kinazna aktivnost
proteinska tirozinska kinazna aktivnost
Ćelijska komponenta nukleus
citoplazma
endozom
Biološki proces endocitoza
signalni put receptora sa ćelijske površine
prenos signal posredovan malom GTPazom
Pregled RNK izražavanja
podaci
Ortolozi
VrstaČovekMiš
Entrez1018851789
EnsemblENSG00000061938ENSMUSG00000022791
UniProtQ07912O54967
Ref. Sekv. (iRNK)NM_001010938NM_001110147
Ref. Sekv. (protein)NP_001010938NP_001103617
Lokacija (UCSC)Chr 3:
195.59 - 195.64 Mb
Chr 16:
32.64 - 32.68 Mb
PubMed pretraga[1][2]

Aktivirana CDC42 kinaza 1, takođe poznata kao ACK1, je enzim koji je kod ljudi kodiran TNK2 genom.[1][2][3][4][5]

TNK2 gen kodira nereceptorsku tirozinsku kinazu, ACK1, koja se vezuje za višestruke receptorske tirozinske kinaze e.g. EGFR, MERTK, AXL, HER2 i insulinski receptor (IR). ACK1 takođe interaguje sa Cdc42Hs u njegovoj GTP-vezanoj formi i inhibira intrinzičnu i GTPaznu aktivnost Cdc42H. Vezivanje je posredovano jedistvenom sekvencom od 47 aminokiselina između C-terminusa i SH3 domena. Ovaj protein učestvuje u regulatornom mehanizmu kojim se održava GTP-vezana aktivna forma Cdc42H i koji je direktno povezan sa torozinsko fosforilacionim putem prenosa signala. Poznato je nekoliko alternativno splajsovanih transkriptnih varijanti ovog gena, ali se izražavaju samo dve varijante.[5]

Interakcije

ACK1 ili TNK2 formira interakcije sa AKT,[3] Androgenskim receptorom ili AR,[6] tumornim supresorom WWOX,[7] FYN[8] i Grb2.[9][10] ACK1 interakcije sa njegovim supstratima dovode do njihove fosforilacije na specifičnim tirozinskim ostacima. ACK1 direktno fosforiliše AKT na tirozinu 176, AR na tirosizinima 267 i 363, i WWOX na torozinu 287. Ack1-AR signalizacije takođe učestvuje u regulaciji ATM nivoaa[11]

Reference

  1. Mahajan K, Mahajan NP (August 2010). „Shepherding AKT and androgen receptor by Ack1 tyrosine kinase.”. J Cell Physiol. 224 (2): 327–23. DOI:10.1002/jcp.22162. PMID 20432460. 
  2. Manser E, Leung T, Salihuddin H, Tan L, Lim L (June 1993). „A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42”. Nature 363 (6427): 364–7. DOI:10.1038/363364a0. PMID 8497321. 
  3. 3,0 3,1 Mahajan K, Coppola D, Challa S, Fang B, Chen YA, Zhu W, Lopez AS, Koomen J, Engelman RW, Rivera C, Muraoka-Cook RS, Cheng JQ, Schönbrunn E, Sebti SM, Earp HS, Mahajan NP. (March 2010). „Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation”. PLoS ONE 5 (3): e9646. DOI:10.1371/journal.pone.0009646. PMID 20333297. 
  4. Yokoyama N, Miller WT (November 2003). „Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and interaction with Hck”. J Biol Chem 278 (48): 47713–23. DOI:10.1074/jbc.M306716200. PMID 14506255. 
  5. 5,0 5,1 „Entrez Gene: TNK2 tyrosine kinase, non-receptor, 2”. 
  6. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Earp HS, Whang YE. (May 2007). „Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation.”. Proc Natl Acad Sci U S A. 104 (20): 8438–43. DOI:10.1073/pnas.0700420104. PMID 17494760. 
  7. Mahajan NP, Whang YE, Mohler JL, Earp HS. (November 2005). „Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox.”. Cancer Res. 65 (22): 10514–23. DOI:10.1158/0008-5472.can-05-1127. PMID 16288044. 
  8. Linseman DA, Heidenreich KA, Fisher SK (February 2001). „Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway”. J. Biol. Chem. 276 (8): 5622–8. DOI:10.1074/jbc.M006812200. PMID 11087735. 
  9. Satoh T, Kato J, Nishida K, Kaziro Y (May 1996). „Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation”. FEBS Lett. 386 (2-3): 230–4. DOI:10.1016/0014-5793(96)00449-8. PMID 8647288. 
  10. Kato-Stankiewicz J, Ueda S, Kataoka T, Kaziro Y, Satoh T (June 2001). „Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner”. Biochem. Biophys. Res. Commun. 284 (2): 470–7. DOI:10.1006/bbrc.2001.5004. PMID 11394904. 
  11. Mahajan K, Coppola D, Rawal B, Chen YA, Lawrence HR, Engelman RW, Lawrence NJ, Mahajan NP. (June 2012). „Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer.”. J Biol Chem. 287 (26): 22112–22. DOI:10.1074/jbc.M112.357384. PMID 22566699. 

Literatura

  • Maruyama K, Sugano S (1994). „Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides”. Gene 138 (1–2): 171–4. DOI:10.1016/0378-1119(94)90802-8. PMID 8125298. 
  • Satoh T, Kato J, Nishida K, Kaziro Y (1996). „Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation”. FEBS Lett. 386 (2–3): 230–4. DOI:10.1016/0014-5793(96)00449-8. PMID 8647288. 
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). „Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library”. Gene 200 (1–2): 149–56. DOI:10.1016/S0378-1119(97)00411-3. PMID 9373149. 
  • Mott HR, Owen D, Nietlispach D, et al. (1999). „Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK”. Nature 399 (6734): 384–8. DOI:10.1038/20732. PMID 10360579. 
  • Eisenmann KM, McCarthy JB, Simpson MA, et al. (2000). „Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas”. Nat. Cell Biol. 1 (8): 507–13. DOI:10.1038/70302. PMID 10587647. 
  • Kato J, Kaziro Y, Satoh T (2000). „Activation of the guanine nucleotide exchange factor Dbl following ACK1-dependent tyrosine phosphorylation”. Biochem. Biophys. Res. Commun. 268 (1): 141–7. DOI:10.1006/bbrc.2000.2106. PMID 10652228. 
  • Owen D, Mott HR, Laue ED, Lowe PN (2000). „Residues in Cdc42 that specify binding to individual CRIB effector proteins”. Biochemistry 39 (6): 1243–50. DOI:10.1021/bi991567z. PMID 10684602. 
  • Kiyono M, Kato J, Kataoka T, et al. (2000). „Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1”. J. Biol. Chem. 275 (38): 29788–93. DOI:10.1074/jbc.M001378200. PMID 10882715. 
  • Linseman DA, Heidenreich KA, Fisher SK (2001). „Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway”. J. Biol. Chem. 276 (8): 5622–8. DOI:10.1074/jbc.M006812200. PMID 11087735. 
  • Teo M, Tan L, Lim L, Manser E (2001). „The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors”. J. Biol. Chem. 276 (21): 18392–8. DOI:10.1074/jbc.M008795200. PMID 11278436. 
  • Kato-Stankiewicz J, Ueda S, Kataoka T, et al. (2001). „Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner”. Biochem. Biophys. Res. Commun. 284 (2): 470–7. DOI:10.1006/bbrc.2001.5004. PMID 11394904. 
  • Oda T, Muramatsu MA, Isogai T, et al. (2001). „HSH2: a novel SH2 domain-containing adapter protein involved in tyrosine kinase signaling in hematopoietic cells”. Biochem. Biophys. Res. Commun. 288 (5): 1078–86. DOI:10.1006/bbrc.2001.5890. PMID 11700021. 
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). „Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. DOI:10.1073/pnas.242603899. PMC 139241. PMID 12477932. 
  • Salomon AR, Ficarro SB, Brill LM, et al. (2003). „Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry”. Proc. Natl. Acad. Sci. U.S.A. 100 (2): 443–8. DOI:10.1073/pnas.2436191100. PMC 141014. PMID 12522270. 
  • Ahmed I, Calle Y, Sayed MA, et al. (2004). „Cdc42-dependent nuclear translocation of non-receptor tyrosine kinase, ACK”. Biochem. Biophys. Res. Commun. 314 (2): 571–9. DOI:10.1016/j.bbrc.2003.12.137. PMID 14733946. 
  • Gu Y, Lin Q, Childress C, Yang W (2004). „Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase”. J. Biol. Chem. 279 (29): 30507–13. DOI:10.1074/jbc.M313518200. PMID 15123659. 
  • Brandenberger R, Wei H, Zhang S, et al. (2005). „Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation”. Nat. Biotechnol. 22 (6): 707–16. DOI:10.1038/nbt971. PMID 15146197. 
  • Lougheed JC, Chen RH, Mak P, Stout TJ (2004). „Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1”. J. Biol. Chem. 279 (42): 44039–45. DOI:10.1074/jbc.M406703200. PMID 15308621. 

Vanjske veze

  • TNK2 human gene location in the UCSC Genome Browser.
  • TNK2 human gene details in the UCSC Genome Browser.
  • p
  • r
  • u
PDB Galerija
1cf4: Kompleks CDC42/ACK GTPazni domen vezivanja
1cf4: Kompleks CDC42/ACK GTPazni domen vezivanja  
1u46: Kristalna struktura nefosforilisanog kinaznog domena tirozinske kinaue ACK1
1u46: Kristalna struktura nefosforilisanog kinaznog domena tirozinske kinaue ACK1  
1u4d: Struktura ACK1 kinaznog domena vezanog za debromohimenialdizin
1u4d: Struktura ACK1 kinaznog domena vezanog za debromohimenialdizin  
1u54: Kristalna struktura fosforilisanih i nefosforilisanih kinaznih domena CDC42-asocirane tirozinske kinaze ACK1 vezane za AMP-PCP
1u54: Kristalna struktura fosforilisanih i nefosforilisanih kinaznih domena CDC42-asocirane tirozinske kinaze ACK1 vezane za AMP-PCP  
  • p
  • r
  • u
  • p
  • r
  • u
Receptori faktora rasta
EGFR • ERBB2 • ERBB3 • ERBB4
IGF1R • INSR • INSRR
CSF1R • FLT3 • KIT • PDGFR (PDGFRA, PDGFRB)
FGFR1 • FGFR2 • FGFR3 • FGFR4
VEGFR1 • VEGFR2 • VEGFR3 • VEGFR4
MET • RON
NTRK1 • NTRK2 • NTRK3
EPH receptorska familija
EPHA1 • EPHA2 • EPHA3 • EPHA4 • EPHA5 • EPHA6 • EPHA7 • EPHA8 • EPHB1 • EPHB2 • EPHB3 • EPHB4 • EPHB5 • EPHB6 • EPHX
LTK receptorska familija
LTK • ALK
TIE receptorska familija
TIE • TEK
ROR receptorska familija
ROR1 • ROR2
DDR receptorska familija
DDR1 • DDR2
PTK7 receptorska familija
RYK receptorska familija
MuSK receptorska familija
ROS receptorska familija
ROS1
AATYK receptorska familija
AATYK • AATYK2 • AATYK3
AXL receptorska familija
AXL • MER • TYRO3
RET receptorska familija
nekategorisani
  • p
  • r
  • u
ABL familija
ABL1 • ARG
ACK familija
ACK1 • TNK1
CSK familija
CSK • MATK
FAK familija
FAK • PYK2
FES familija
FES • FER
FRK familija
FRK • BRK • SRMS
JAK familija
JAK1 • JAK2 • JAK3 • TYK2
SRC-A familija
SRC • FGR • FYN • YES1
SRC-B familija
BLK • HCK • LCK • LYN
TEC familija
TEC • BMX • BTK • ITK • TXK
SYK familija
SYK • ZAP70
B enzm: 1.1/2/3/4/5/6/7/8/10/11/13/14/15-18, 2.1/2/3/4/5/6/7/8, 2.7.10, 2.7.11-12, 3.1/2/3/4/5/6/7, 3.1.3.48, 3.4.21/22/23/24, 4.1/2/3/4/5/6, 5.1/2/3/4/99, 6.1-3/4/5-6