Gegenbauerpolynom

Inom matematiken är Gegenbauerpolynomen eller ultrasfäriska polynomen C(α)n(x) en serie ortogonala polynom. De generaliserar Legendrepolynomen och Tjebysjovpolynomen, och är specialfall av Jacobipolynomen. De är uppkallade efter Leopold Gegenbauer.

Karakteriseringar

Det finns ett flertal karakteriseringar av Gegenbauerpolynomen.

  • De kan definieras med hjälp av deras genererande funktion som
1 ( 1 2 x t + t 2 ) α = n = 0 C n ( α ) ( x ) t n . {\displaystyle {\frac {1}{(1-2xt+t^{2})^{\alpha }}}=\sum _{n=0}^{\infty }C_{n}^{(\alpha )}(x)t^{n}.}
  • Gegenbauerpolynomen satisfierar differensekvationen
C 0 α ( x ) = 1 C 1 α ( x ) = 2 α x C n α ( x ) = 1 n [ 2 x ( n + α 1 ) C n 1 α ( x ) ( n + 2 α 2 ) C n 2 α ( x ) ] . {\displaystyle {\begin{aligned}C_{0}^{\alpha }(x)&=1\\C_{1}^{\alpha }(x)&=2\alpha x\\C_{n}^{\alpha }(x)&={\frac {1}{n}}[2x(n+\alpha -1)C_{n-1}^{\alpha }(x)-(n+2\alpha -2)C_{n-2}^{\alpha }(x)].\end{aligned}}}
  • Gegenbauerpolynomen är lösningar till Gegenbauers differentialekvation
( 1 x 2 ) y ( 2 α + 1 ) x y + n ( n + 2 α ) y = 0. {\displaystyle (1-x^{2})y''-(2\alpha +1)xy'+n(n+2\alpha )y=0.\,}
α = 1/2 reducerar sig ekvationen till Legendres ekvation, och Gegenbauerpolynomen reducerar sig till Legendrepolynomen.
  • Gegenbauerpolynomen är ett specialfall av hypergeometriska funktionen:
C n ( α ) ( z ) = ( 2 α ) n n ! 2 F 1 ( n , 2 α + n ; α + 1 2 ; 1 z 2 ) . {\displaystyle C_{n}^{(\alpha )}(z)={\frac {(2\alpha )_{n}}{n!}}\,_{2}F_{1}\left(-n,2\alpha +n;\alpha +{\frac {1}{2}};{\frac {1-z}{2}}\right).}
Utskrivet lyder formeln
C n ( α ) ( z ) = k = 0 n / 2 ( 1 ) k Γ ( n k + α ) Γ ( α ) k ! ( n 2 k ) ! ( 2 z ) n 2 k . {\displaystyle C_{n}^{(\alpha )}(z)=\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{k}{\frac {\Gamma (n-k+\alpha )}{\Gamma (\alpha )k!(n-2k)!}}(2z)^{n-2k}.}
  • De är ett specialfall av Jacobipolynomen:
C n ( α ) ( x ) = ( 2 α ) n ( α + 1 2 ) n P n ( α 1 / 2 , α 1 / 2 ) ( x ) . {\displaystyle C_{n}^{(\alpha )}(x)={\frac {(2\alpha )_{n}}{(\alpha +{\frac {1}{2}})_{n}}}P_{n}^{(\alpha -1/2,\alpha -1/2)}(x).}
där ( θ ) n {\displaystyle (\theta )_{n}} är Pochhammersymbolen.
Av det följer Rodrigues formel:
C n ( α ) ( x ) = ( 2 ) n n ! Γ ( n + α ) Γ ( n + 2 α ) Γ ( α ) Γ ( 2 n + 2 α ) ( 1 x 2 ) α + 1 / 2 d n d x n [ ( 1 x 2 ) n + α 1 / 2 ] . {\displaystyle C_{n}^{(\alpha )}(x)={\frac {(-2)^{n}}{n!}}{\frac {\Gamma (n+\alpha )\Gamma (n+2\alpha )}{\Gamma (\alpha )\Gamma (2n+2\alpha )}}(1-x^{2})^{-\alpha +1/2}{\frac {d^{n}}{dx^{n}}}\left[(1-x^{2})^{n+\alpha -1/2}\right].}

Egenskaper

Askey–Gaspers olikhet för Gegenbauerpolynomen är

j = 0 n C j α ( x ) ( 2 α + j 1 j ) 0 ( x 1 , α 1 / 4 ) . {\displaystyle \sum _{j=0}^{n}{\frac {C_{j}^{\alpha }(x)}{2\alpha +j-1 \choose j}}\geq 0\qquad (x\geq -1,\,\alpha \geq 1/4).}

Källor

Den här artikeln är helt eller delvis baserad på material från engelskspråkiga Wikipedia, Gegenbauer polynomials, 8 december 2013.
  • Bayin, S.S. (2006), Mathematical Methods in Science and Engineering, Wiley , Chapter 5
  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), ”Orthogonal Polynomials”, i Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. m.fl., NIST Handbook of Mathematical Functions, Cambridge University Press, MR 2723248, ISBN 978-0521192255 
  • Stein, Elias; Weiss, Guido (1971), Introduction to Fourier Analysis on Euclidean Spaces, Princeton, N.J.: Princeton University Press, ISBN 978-0-691-08078-9 
  • Suetin, P.K. (2001), ”Ultraspherical polynomials”, i Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1556080104 

Externa länkar

  • Wikimedia Commons har media som rör Gegenbauerpolynom.
    Bilder & media
v  r
Speciella funktioner
Gamma- och relaterade funktioner
Gammafunktionen · Betafunktionen · Digammafunktionen · Trigammafunktionen · Polygammafunktionen · Ofullständiga gammafunktionen · Barnes G-funktion
Zeta- och L-funktioner
Riemanns zetafunktion · Dirichlets L-funktion · Dedekinds zetafunktion · Artins L-funktion · Hasse–Weils L-funktion · Motiviska L-funktionen
Besselfunktioner och relaterade funktioner
Elliptiska funktioner och thetafunktioner
Hypergeometriska funktioner
Hypergeometriska funktionen · Generaliserad hypergeometrisk funktion · Bilateral hypergeometrisk serie · Fox–Wrights funktion · Meijers G-funktion · Fox H-funktion · Kampé de Fériets funktion
Ortogonala polynom
Andra funktioner